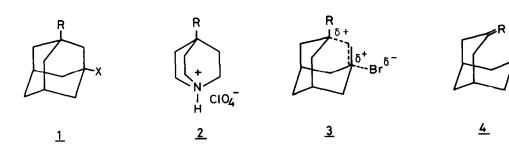
Tetrahedron Letters No. 7, pp 663-666, 1978. Pergamon Press. Printed in Great Britain.


INDUCTIVE AND HYPERCONJUGATIVE EFFECTS IN THE SOLVOLYSIS OF 4-SUBSTITUTED BICYCLO[2.2.2]OCT-1-YL p-NITROBENZENESULFONATES

C.A. GROB & R. RICH

Institute of Organic Chemistry, St. Johanns-Ring 19, CH-4056 Basel

(Received in UK 12 December 1977; accepted for publication 28 December 1977)

As previously reported ¹ the solvolysis rates of 1-R substituted 3-bromoadamantanes (<u>1</u>), X = Br, in 80 % ethanol correlate well with the inductive substituent constants d_1^q of alkyl and electron withdrawing groups, as derived from the pK_a values of 4-substituted quinuclidinium perchlorates <u>2</u>². In cases where R was a +M substituent, such as OH, OCH₃, SCH₃, C₆H₅, or an electrofugal group ³, such as Sn(CH₃)₃, COO⁻, CH₂OH, CH₂NH₂ or CONH₂, solvolysis to alcohols <u>1</u>, X = OH, and ethers <u>1</u>, X = OEt, occurred 2.5 to 44 times as fast as calculated from the d_1^q values of these substituents. This acceleration was ascribed to hyperconjugative delocalization of the positive charge in the transition state for ionization <u>3</u>. Only when strong +M substituents such as (CH₃)₂N, O⁻ and S⁻ were present at C(1) did concerted fragmentation ⁴ to products of type <u>4</u>, where R = (CH₃)₂N⁺, O and S, take place.

) CN) Br) OCH ₃) СООСН ₃) COOC ₂ H ₅) NHCOOC ₂ H ₅) OH) COOH) CONH ₂) N(CH ₃) ₂) CH ₂ NH ₂) Сн ₂ он	Me) Et	i-Pr	t-Bu	coo_	Н	ل تر	
0.054	0.218	1.02	1.26	1.37	1.80	2.12	2.32	3.56	7.40	54.6	56.2	114	130	153	185	219	462	k x 10 ⁵ (s ⁻¹)	
			ן ס ג	 .5 	1	- 5.0 -		- 4.5 -		- 40 -	ا بر	ы л	- 3.0 -		- 2.5 -		- 2.0 -	log k	
0.0	-													щ Т Т Т Т		• I		*	
0.5									_		/	CH2NH2	с с н2он						
1.0							NHC		N(CH3)2			⁴ 2	POH	č	5				
1.5						CO2Me OCH3	NHCO2Et OH	coo											
2.0					/	H.	Ý 9	●CONH2											
2.5	ļ			/															
ĊN			/	•Br															

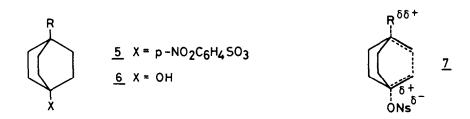
Figure. Plot of log k for 4-R-bicyclo[2.2.2]octyl p-nitrobenzenesulfonates against $\delta_{\rm I}^q.$

Table. First order rate constants for 4-R-bicyclo[2.2.2]octyl p-nitrobenzenesulfonates in 80 vol. % ethanol at 75° C.

<u>г</u>) q)

р) р

III)


۶

Ľ

j

a) b) d) f) f) h) No. 7

Hyperconjugation involving a single CC-bond as well as fragmentation are precluded when the electron donor and the positive reaction center are separated by an additional carbon atom, as in 4-R-bicyclo[2.2.2]octyl p-nitrobenzenesulfonates (nisylates) (5). The solvolysis rates of the latter compounds should therefore be controlled by the inductive effect of \mathcal{R} alone, unless ionization is assisted by twofold hyperconjugation, as illustrated in 7. Such extended d-bond delocalization (depicted for only one of the three ethano bridges in 7) has not been observed before and is in accordance with the principle of ethylogy ⁵

Hydrolysis of 18 nisylates $\underline{5}$ (Table) in 70 % dioxane yielded only the respective alcohols $\underline{6}$. The rate constants for these compounds in 80 vol. % ethanol cover a range of 8.5 x 10^3 (Table), and their logarithms correlate well with the inductive constants d_{I}^{q} of the 4-substituents, except in the cases where $R = H, COO^{-}, CONH_{2}, CH_{2}OH$ and $CH_{2}NH_{2}$ (Figure). These compounds reacted 3.7, 7.7, 3.1, 2.4 and 1.7 times, respectively, faster than anticipated on the basis of substituent d_{I}^{q} values. These accelerations are well beyond the maximum deviation from the regression line defined by the other substituents, i.e. \pm 40 %. The common feature of the above substituents and of hydrogen is that they are potentially electrofugal ³, i.e. they are released without the bonding electron pair in heterolytic fragmentation and 1,2-elimination of the type:

$$R-C-C-X \longrightarrow R' + C=C' + X:$$

where R' is CO_2 , HNCO, $CH_2=O$, $CH_2=NH_2^+$ and H^+ , respectively. These substituents appear to assist the ionization, albeit weakly, of nisylates <u>5</u> by twofold CC- or by CH-CC-hyperconjugation, respectively, as illustrated in <u>7</u>.

It is noteworthy that the alkyl groups follow the inductive order Me < Et < i-Pr < t-Bu and that they are all less electron-releasing than hydrogen (Table). In their earlier study of the acetolysis rates of the p-bromobenzenesulfonates of several 4-substituted bicyclo[2.2.2]octanols <u>6</u> Schleyer and Woodworth ⁶ observed the anomalous position of hydrogen relative to alkyl. However, they ascribed this to a change in skeletal geometry attending the replacement of hydrogen by the bulkier alkyl groups. The present study of a wider range of 4-substituents suggests twofold hyperconjugation as a plausible alternative.

REFERENCES

- C.A. Grob, W. Fischer & H. Katayama, Tetrahedron Letters <u>1976</u>, 2183; C.A. Grob, Angewandte Chemie, internat. edit. <u>15</u>, 569 (1976).
- 2) C.A. Grob & M.G. Schlageter, Helv. chim. acta 59, 264 (1976).
- 3) C.A. Grob & P.W. Schiess, Angewandte Chemie, internat. edit. 6, 1 (1967).
- 4) C.A. Grob, ibid. 8, 535 (1969).
- 5) C.A. Grob, Experientia 13, 126 (1957).
- 6) P. von R. Schleyer & C.W. Woodworth, J. Am. Chem. Soc. <u>90</u>, 6528 (1968).